科研管理 ›› 2025, Vol. 46 ›› Issue (7): 174-184.DOI: 10.19571/j.cnki.1000-2995.2025.07.017

• 论文 • 上一篇    下一篇

价值链视角下传统制造企业数字化转型影响因素研究

马静,吴利华   

  1. 东南大学经济管理学院,江苏 南京211189
  • 收稿日期:2024-06-08 修回日期:2024-12-11 出版日期:2025-07-20 发布日期:2025-07-14
  • 通讯作者: 吴利华
  • 基金资助:
    国家自然科学基金面上项目:“智慧制造业价值共同体区域一体化脱碳发展机制研究”(42277493,2023.01—2026.12)。

Research on the influencing factors of digital transformation in traditional manufacturing enterprises from the perspective of value chain

Ma Jing, Wu Lihua   

  1. School of Economics and Management, Southeast University, Nanjing 211189, Jiangsu, China
  • Received:2024-06-08 Revised:2024-12-11 Online:2025-07-20 Published:2025-07-14

摘要:     加速传统制造企业数字化转型是促进数字经济与实体经济深度融合的关键举措。本文以 2011—2022年中国A股上市传统制造企业为样本,通过文本分析法测度其生产、营销和服务等价值链环节的数字化转型水平,并运用基于回归分析的Shapley值分解法剖析各环节数字化转型的影响因素及贡献度。研究发现:传统制造企业的数字化转型水平整体呈上升趋势,但价值链各环节数字化转型发展不均衡,具体表现为生产环节领先于营销环节,营销环节又优于服务环节。企业规模、企业年龄和高管认知等内源因素以及行业成长性、行业数字化转型规模等外源因素对价值链环节的数字化转型存在不同程度的边际影响。其中,同行企业数字化转型水平和行业数字化转型规模对价值链环节数字化转型的贡献最为显著,体现了传统制造企业数字化转型突出的“示范效应”和“跟风效应”。然而,在数字化发展初始起步阶段以及市场化程度较低的地区,企业的属性特征、资源基础以及动态能力等内源因素对生产环节的数字化转型起到了至为关键的作用。本文从价值链视角讨论了数字化转型的影响因素及其相对重要性,拓展和丰富了数字化转型研究的理论框架,对推进传统制造业数字化转型也具有参考价值和指导意义。

关键词: 价值链, 数字化转型, 影响因素, 贡献度, Shapley值分解法

Abstract:    Accelerating the digital transformation of traditional manufacturing enterprises is a crucial initiative to promote the deep integration of digital economy and real economy. This paper adopted the A-share listed traditional manufacturing enterprises in China as a sample from 2011 to 2022, measured the digital transformation level of their production, marketing and service value chain links through text analysis, and analyzed the influencing factors and contribution degree of digital transformation of each link by using the Shapley value decomposition method based on regression analysis. The research found that the overall digital transformation level of traditional manufacturing enterprises is on the rise, but the development of digital transformation in various links of the value chain is uneven, which is manifested in the fact that the production link is ahead of the marketing link, and the marketing link is better than the service link. The endogenous factors such as enterprise size, enterprise age, and executive cognition, as well as the exogenous factors such as industry growth and the scale of digital transformation in the industry, have varying degrees of marginal impact on the digital transformation of value chain links. Among them, the level of digital transformation of peer enterprises and the scale of digital transformation of the industry make the most significant contribution to the digital transformation of value chain links, reflecting the prominent "demonstration effect" and "followthewind effect" of the digital transformation of traditional manufacturing enterprises. However, in the initial stage of digital development and in the regions with a low degree of marketization, endogenous factors, such as the attributes, resource base and dynamic capabilities of enterprises, play a vital role in the digital transformation of the production link. This paper has discussed the influencing factors of digital transformation and their relative importance from the perspective of value chain, and expanded and enriched the theoretical framework of digital transformation research, and it will be of great practical significance to promote the digital transformation in the traditional manufacturing industry.

Key words: value chain, digital transformation, influencing factor, contribution degree, Shapley value decomposition method