The discrete mathematics’ tournament is applied to a comprehensive evaluation, and the regional capacity assessment model is built by integrating with the rough set and entropy theory. Then, statistical data of eight coastal provinces is used to do empirical study. Through the study, it is found that on the one hand, the strength ranking of eight coastal cities’ regional science and technology innovation capacity is Guangdong, Jiangsu, Shandong, Zhejiang, Liaoning, Fujian, Hebei, and Guangxi in turn. The empirical conclusions reflect the reality more objectively and scientifically. On the other hand, tournament method has a general applicability in the comprehensive evaluation research. Furthermore, it also avoids the adverse effects from subjective factors and information overlap.
Key words
tournament /
innovation ability /
entropy /
rough set
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李晓路,周志方.我国区域技术创新能力体系评价及提升——基于因子分析法的模型构建与实证检验[J].科学管理研究.2006(2):5-10.
[2] 唐炎钊.区域科技创新能力的模糊综合评价模型及应用研究——2001年广东省科技创新能力的综合分析[J].系统工程理论与实践.2004(2):37-43.
[3] 荣飞,刘春凤.区域科技创新能力评价与态势分析[J].河北大学学报.2006(6):48-51.
[4] 杨大楷,冯一体.长江三角洲区域科技创新能力实证研究[J].上海财经大学学报.2008(6):80-90.
[5] 冯岑明,方德英.基于RBF神经网络的区域科技创新能力的综合评价研究[J].科技进步与对策.2007(10):140-143.
[6] 杨艳萍.区域科技创新能力的主成分分析与评价[J].技术经济.2007(6):15-20.
[7] 何志红.多部竞赛图中的分量共轭圈与共轭圈[M].山东:山东大学,2007.
[8] L. Volkmann and S. Winzen, Close to regular multipartite tournaments containing a Hamiltonian path[J]. J. Comb. Math. Comb. Comp., 2004(49):195-210.
[9] Y. Guo, J. H. Kwak, The cycle structure of regular multipartite tournaments [J]. Discrete Appl. Math., 2002(126):107-114.
[10] L. Volkmann, Cycles of length four through a given arc in almost regular multipartite tournaments [J]. Arc Combin., 2003(8):181-192.
[11] L. Volkmann, Hamiltonian paths containing a given arc, in almost regular bipartite tournaments [J]. Discrete Math., 2004(285):359-364.
[12] L. Volkmann, S. Winzen, Cycles through a given arc in almost regular multipartite tournaments [J]. Anstralns. J. Combin., 2003(27): 223-245.
[13] L Volkmann, S. Winzen, Cycles through a given arc and certain partite sets in almost regular multipartite tournaments [J]. Discrete Math., 2004(283):217-229.
[14] L. Volkmann, A. Yeo, Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments [J]. Discrete Math., 2004(281):267-276.
[15] L. C. Bermond and C. Thonmssen, Cycles in digraphs-A survey [J]. J. Graph Theory, 1981 (5):1-43.
[16] K. B. Reid, Tournaments: scores,kings,generalizations, and special topics, in Surveys in Graph Theory [J]. Congr., 1996(115):171-211.
[17] L. Volkmann, Complementary cycles in regular multipartite tournaments, where one cycle has length four [J]. Kyungpook Math., J. 2004(44):219-247.
[18] L. Volkmann, Complementary cycles in regular multipartite tournaments [J]. Austral. J. Combin., 2005(31):119-134.
[19] L. Volkmann, All regular multipaxtite toutnaments that are cycle complemenary[J]. Discrete Math., 2004(281):255-266.
[20] M. Tewes, Almost all regular c-partite tournaments with c≥5 are vertex pancyclic[J]. Discrete Math., 2002(242):201.228.
[21] 黄力伟,许品刚,王勤.求解多属性决策问题的竞争图法[J],运筹与管理,2007(2):19-23.
[22] 王彪,段禅伦,吴昊,宋永刚.粗糙集与模糊集的应用及研究[M].电子工业出版社.2008.
[23] 林志宏,董学晨,乔宏.基于粗糙集和熵模型的电力企业融资风险评价[J].科技和产业.2008(10):67-70.
[24] 李国良,付强,冯艳.基于熵权的灰色关联分析模型及其应用[J].水资源与水工程学报.2006(12):15-19.
[25] 李柏洲,苏屹.区域科技创新能力评价体系的优化及实证分析[J].情报杂志,2009(8):80-83.