科研管理 ›› 2025, Vol. 46 ›› Issue (2): 43-52.DOI: 10.19571/j.cnki.1000-2995.2025.02.005

• 论文 • 上一篇    下一篇

人机场三元协同如何赋能新质生产力:范式逻辑与实践进路

尹西明1,武沛琦1,钱雅婷1,柳卸林2,3   

  1. 1.北京理工大学管理学院,北京100081;
    2.首都经济贸易大学工商管理学院,北京100071;
    3.中国科学院大学经济与管理学院,北京100190

  • 收稿日期:2024-03-03 修回日期:2024-12-13 出版日期:2025-02-20 发布日期:2025-02-11
  • 通讯作者: 柳卸林
  • 基金资助:
    国家自然科学基金面上项目:“科技成果转化赋能新质生产力发展:理论基础、组织模式与制度环境”(72474025,2024.09—2028.12);国家制造强国建设重大项目:“‘十五五’新型工业化‘新支柱’产业选择及政策设计”(2024-15,2024.06—2025.12);国家自然科学基金青年项目:“多层次系统视角下中国高校学术创业与成果转化促进机制研究”(72104027,2021.09—2024.12)。

The empowerment of new quality productive forces by the human-machine-context collaboration: Its paradigm logic and practical approaches

Yin Ximing1, Wu Peiqi1, Qian Yating1, Liu Xielin2,3   

  1. 1. School of Management, Beijing Institute of Technology, Beijing 100081, China;
    2. College of Business Administration, Capital University of Economics and Business, Beijing 100071, China; 
    3. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-03-03 Revised:2024-12-13 Online:2025-02-20 Published:2025-02-11

摘要:     以人工智能(AI)为代表的颠覆性技术,正加速重塑生产关系,是效率革命和新质生产力持续涌现的重要引擎。然而,现有研究多关注AI技术创新过程,忽视了技术如何与场景深度融合,尤其是生成式AI技术产业化悖论日益凸显,亟须超越人机二元协同,探索以新范式加快AI赋能新质生产力涌现。本研究系统回顾人机二元协同范式,基于场景驱动创新理论,研究人机场三元协同如何赋能新质生产力。研究发现:人机场三元协同的新范式能够更有效赋能组织前瞻预判、主动感知,通过深度融合人类智慧、机器智能与场景需求,提高创新效率和效能;其赋能新质生产力的过程主要体现为以“场景(C)-技术(T)-能力(C)”三位一体推进现代化产业体系(S)的CTCS机制,促进技术革命性突破、生产要素创新性组合和产业深度转型升级,进而赋能新质生产力持续涌现。最后以北京智源人工智能研究院为例,研究发现面向复杂动态场景的人机高效协同共创,能够在实现AI原创技术突破和快速产业化的过程中持续赋能新质生产力涌现。本研究拓展了人机协同理论,为把握场景驱动创新机遇,推动“人工智能+”行动落地,因地制宜发展新质生产力提供重要微观理论基础和实践决策启示。

关键词: 新质生产力, 人工智能, 场景驱动创新, 人机场三元协同, 范式逻辑, 实践进路

Abstract:      Disruptive technologies, exemplified by artificial intelligence (AI), are rapidly transforming production relationships and serve as key drivers of the efficiency revolution, catalyzing the continuous emergence of new quality productive forces. However, current research predominantly focuses on the AI innovation process itself, often overlooking the crucial integration of technology with real-world contexts. This issue is particularly evident in the growing paradox of the industrialization of generative AI technologies, highlighting the need to transcend human-machine collaboration. Instead, there is a pressing need to explore new paradigms that accelerate the role of AI in empowering new quality productive forces. This study systematically reviewed the human-machine collaboration paradigm and drew on the context-driven innovation theory to explore how the human-machine-context collaboration, as a new paradigm, empowers new quality productive forces. We found that this paradigm could enhance organizational capabilities by enabling forward-looking decision-making and active environmental sensing, improving innovation efficiency and effectiveness through the deep integration of human intelligence, machine learning, and contextual needs. Additionally, this study documented the application of a "Context (C) - Technology (T) - Capability (C)" triad within the human-machine-context collaboration framework to advance the modernization of industrial systems (S). This triad fosters technological breakthroughs, innovative combinations of production factors, and deep transformation of industries, all of which contribute to the ongoing emergence of new quality productive forces through the CTCS mechanism. Finally, taking the Beijing Academy of Artificial Intelligence as an example, this study analyzed how it promotes efficient human-machine co-creation in complex dynamic contexts, continuously empowering the emergence of new quality productive forces throughout the process of achieving breakthroughs in AI original technologies and rapid industrialization. This study has expanded the theoretical understanding of human-machine collaboration and will offer valuable micro-level theoretical insights and practical guidance for China to capitalize on the opportunity presented by context-driven innovation, advancing the "AI+" initiative, thus fostering the development of new quality productive forces tailored to local contexts.

Key words: new quality productive force, artificial intelligence, context-driven innovation, human-machine-context collaboration, paradigm logic, practical approach