[1]戴翔,杨双至.数字赋能、数字投入来源与制造业绿色化转型[J].中国工业经济,2022(9):83-101.[2]杨刚强,王海森,范恒山等.数字经济的减排效应:理论分析与经验证据[J].中国工业经济,2023(5):81-97.[3]Yang., H C., Li., L S., Liu., Y B. The effect of manufacturing intelligence on green innovation performance in China[J]. Technological Forecasting& Social Change, 2022, 78:121569.[4]吴传清,邓明亮.数字经济发展对中国工业碳生产率的影响研究[J].中国软科学,2023(11):189-200.[5]陈志远,丁小珊,韩冲等.制造业集聚、污染关联机制与绿色发展实践路径——基于空间溢出模型的研究[J].统计研究,2022,39(09):46-61.[6]董碧滢,徐盈之,孙文远.“调结构”视角下绿色技术创新的碳解锁路径研究——环境规制的调节效应[J].研究与发展管理,2023,35(04):34-49.[7]Wang M L.Effects of the green finance policy on the green innovation efficiency of the manufacturing industry: A difference-in-difference model[J]. Technological Forecasting & Social Change,2023,189:[8]Wang J D, Dong K Y, ;Dong X C, et al. Assessing the digital economy and its carbon-mitigation effects: The case of China[J]. Energy Economics, 2022, 113:[9]李金昌,连港慧,徐蔼婷.“双碳”愿景下企业绿色转型的破局之道——数字化驱动绿色化的实证研究[J].数量经济技术经济研究,2023,40(09):27-49.[10]陈真玲,赵伟刚,李金铠.中国制造业能源拥挤效应研究:基于RAM-DEA模型的分析[J].系统工程理论与实践,2019,39(07):1831-1844.[11]张培,董珂隽.制造企业数据赋能实现机理研究:关键要素和作用机制[J].科学学与科学技术管理,2023,44(08):94-111.[12]马文斌,朱欢.绿色低碳企业创新效率测度及影响因素研究——基于三阶段DEA与Tobit模型[J].软科学:1-12.http://kns.cnki.net/kcms/detail/51.1268.G3.20230920.1418.012.html.[13][14]刘培德,李西娜,李佳路.碳配额交易机制下竞争企业低碳技术扩散——基于复杂网络的演化博弈分析[J]. 系统工程理论与实践,2023.11.[15]Andreas, N., André, H., Anders. B. Feeling the green? Value orientation as a moderator of emotional response to green electricity[J]. Journal of Applied Social Psychology, 2019, 44(10) : 672-680.[16]毕克新,付珊娜,杨朝均等.制造业产业升级与低碳技术突破性创新互动关系研究[J].中国软科学,2017(12):141-153.[17]Adenuga O,. T., Mpofu K, Modise R., K. Energy–Carbon Emissions Nexus Causal Model towards Low-Carbon Products in Future Transport-Manufacturing Industries[J]. Energies, 2011, 15(17): 6322-6329.[18]王安静,郭琳,赵景峰.中国经济与碳排放脱钩的时空异质性及其驱动因素分析[J].软科学:1-12.[19]刘启雷,张媛,雷雨嫣等.数字化赋能企业创新的过程、逻辑及机制研究[J].科学学研究,2022,40(01):150-159.[20]周成,钱再见.中国碳达峰碳中和的政策路径——基于扎根理论和制度语法学的双重分析[J].中国人口·资源与环境,2022,32(11):19-29.[21]Fariha,. I., Fakhra S, M. Junaid., D. et al.Copper biosorption over green silver nanocomposite using artificial intelligence and statistical physics formalism[J]. Journal of Cleaner Production, 2022, 374:[22]Xu L J, Liu Y J, Zhang B D et al. Study on the impact of green finance on low carbon development of manufacturing industry from the perspective of multidimensional space: evidence from China.Environmental science and pollution research international, 2023, 30,17: 50772-50782.[23]周红星,黄送钦.数字化能为创新“赋能”吗———数字化转型对民营企业创新的影响[J].经济学动态,2023(7):69-90.[24]Cardinali P G , Giovanni P D .Responsible digitalization through digital technologies and green practices[J].Corporate Social Responsibility and Environmental Management, 2022, 29.DOI:10.1002/csr.2249.[25]李焱,李佳蔚,王炜瀚等.全球价值链嵌入对碳排放效率的影响机制——“一带一路”沿线国家制造业的证据与启示[J].中国人口·资源与环境,2021,31(07):15-26.[26]He Z, Huang H ,Choi HU,. et al. Building organizational resilience with digital transformation[J]. Journal of Service Management, 2023, 34(1) :147-171.[27]Damodaran A.,van den Heuvel Onno. India's low carbon value chain, green debt, and global climate finance architecture[J]. IIMB Management Review, 2023. 35(2): 97-107.[28]王超发,李雨露,王林雪等.动态能力对智能制造企业数字创新质量的影响研究[J/OL].管理学报:1-9[2023-12-17].http://kns.cnki.net/kcms/detail/42.1725.C.20231129.1018.008.html.[29]解学梅,韩宇航.本土制造业企业如何在绿色创新中实现“华丽转型”?——基于注意力基础观的多案例研究[J].管理世界,2022,38(03):76-106. |