[1]Silver, D.,Huang, A.,Maddison, CJ., et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.[2]Silver, D., Schrittwieser, J., Simonyan, k., et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.[3]Litjens, G.,Kooi, T.,Bejnordi, BE., et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.[4]Gu, JX., Wang, ZH.,Kuen, J., et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.[5]王超. 深度学习在行业指数技术分析中的应用研究[J].管理评论,2021,33(3):75-83.[6]Gunnarsson, BR., Broucke, SV., Baesens, B., et al. Deep learning for credit scoring: Do or don't?[J]. European Journal of Operational Research, 2021, 295(1): 292-305.[7]Lehrer, S., Xie, T., Zhang, XY. Social media sentiment, model uncertainty, and volatility forecasting[J]. Economic Modeling, 2021, 102: 105556. DOI10.1016/j.econmod.2021.105556.[8]钟佳娃,刘巍,王思丽,等. 文本情感分析方法及应用综述[J].数据分析与知识发现,2021,5(06):1-13.[9]Wu, HP., Liu, YL., Wang, JW. Review of Text Classification Methods on Deep Learning[J]. CMC-Computers Materials & Continua, 2020,63 (3): 1309-1321.[10]张海涛, 王丹, 徐海玲等. 基于卷积神经网络的微博舆情情感分类研究[J]. 情报学报, 2018, 37(7): 695-702.[11]Guo, B., Zhang, CX., Liu, JM., et al. Improving text classification with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374.[12]吴鹏, 应杨, 沈思. 基于双向长短期记忆模型的网民负面情感分类研究[J].情报学报, 2018, 37(8):845-853.[13]贺鸣, 孙建军, 成颖. 基于朴素贝叶斯的文本分类研究综述[J]. 情报科学, 2016, 34(7): 147-154.[14]Sinoara, RA., Camacho-Collados, J., Rossi, RG., et al. Knowledge-enhanced document embeddings for text classification[J]. Knowledge-based Systems, 2019, 163: 955-971.[15]Li, Q., Li, PF.,Mao, KZ., et al. Improving convolutional neural network for text classification by recursive data pruning[J]. Neurocomputing, 2020, 414: 143-152.[16]Xie, JB.,Hou, YJ., Wang, YJ., et al. Chinese text classification based on attention mechanism and feature-enhanced fusion neural network[J]. Computing, 2020, 102(3): 683-700.[17]Deng, JF., Cheng, LL., Wang, ZW. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification[J]. Computer Speech And Language, 2021, 68: 101182. DOI10.1016/j.csl.2020.101182.[18]李娜, 姜恩波, 朱一真等. 政策工具自动识别方法与实证研究[J]. 图书情报工作, 2021, 65(7): 115-122.[19]胡吉明, 付文麟, 钱玮等. 融合主题模型和注意力机制的政策文本分类模型[J]. 情报理论与实践. 2021,44(7): 159-165.[20]Arrieta, AB., Diaz-Rodriguez, N.,Del Ser, J., et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[J]. Information Fusion, 2020, 58: 82-115.[21]Tsai, KC.,Wang, L., Han, Z. Caching for Mobile Social Networks with Deep Learning: Twitter Analysis for 2016 US Election[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 193-203.[22]Sahoo, SR., Gupta, BB. Multiple features based approach for automatic fake news detection on social networks using deep learning [J]. Applied Soft Computing, 2021, 100: 106983. DOI10.1016/j.asoc.2020.106983.[23]Li, SB., Hu, J., Cui, YX., et al. DeepPatent: patent classification with convolutional neural networks and word embedding[J]. Scientometrics, 2018, 117(2): 721-744.[24]Yi, X., Walia, E., Babyn, P. Generative adversarial network in medical imaging: A review[J]. Medical Image Analysis, 2019, 58: 101552. DOI10.1016/j.media.2019.101552.[25]Wang, X.,Wang, K.,Lian, SG. A survey on face data augmentation for the training of deep neural networks[J]. Neural Computing & Applications, 2020, 32(19): 15503-15531.[26]张一珂, 张鹏远, 颜永红. 基于对抗训练策略的语言模型数据增强技术[J]. 自动化学报, 2018, 44(5): 891?900. DOI 10.16383/j.aas.2018.c17046.[27]李茜茜, 沈晓燕, 任福继等. 面向数据增强的多种语音情感分类算法研究[J]. 智能系统学报,2021,16(1): 170-177.[28]陆垚杰,林鸿宇,韩先培等. 基于语言学扰动的事件检测数据增强方法[J]. 中文信息学报, 2019, 33(7): 110-117.[29]刘彤, 刘琛, 倪维健. 多层次数据增强的半监督中文情感分析方法[J]. 数据分析与知识发现,2021, 5(5): 51-58.[30]Wei, J., Zou, K. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks [J/OL]. https://arxiv.org/abs/1901.11196, 2019.[31]Ekboir J M . Research and technology policies in innovation systems: zero tillage in Brazil[J]. Research Policy, 2003, 32(4): 573-586.[32]Morosini P . Industrial Clusters, Knowledge Integration and Performance[J]. World Development, 2004, 32(2):305-326.[33]Onishi A . A new challenge to economic science: Global model simulation[J]. Journal of Policy Modeling, 2010, 32(1):1-46.[34]张永安, 耿喆, 王燕妮. 区域科技创新政策分类与政策工具挖掘—基于中关村数据的研究 [J]. 科技进步与对策, 2015, 32(17): 116-22.[35]张宝建, 李鹏利, 陈劲等. 国家科技创新政策的主题分析与演化过程—基于文本挖掘的视角 [J]. 科学学与科学技术管理, 2019, 40(11): 15-31.[36]陈玲,段尧清. 我国政府开放数据政策的实施现状和特点研究:基于政府公报文本的量化分析[J]. 情报学报, 2020, 39(7): 698-709.[37]杨锐, 陈伟, 何涛等. 融合主题信息的卷积神经网络文本分类方法研究 [J]. 现代情报, 2020, 40(4): 42-49.[38]黄水清,王东波. 新时代人民日报分词语料库构建、性能及应用(二)—深度学习自动分词模型构建[J]. 图书情报工作. 2019,63(23): 5-12.[39]王昊, 邓三鸿,苏新宁, 等. 基于深度学习的情报学理论及方法术语识别研究[J]. 情报学报, 2020, 39(8): 817-828.[40]Huang, Y., Chen, J., Zheng, S., et al. Hierarchical multi-attention networks for document classification [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1639-1647.[41]Zheng, X.,Chen, WZ. An Attention-based Bi-LSTM method for visual object classification via EEG[J]. Biomedical Signal Procesing and Control, 2021, 63: 102174. DOI10.1016/j.bspc.2020.102174.[42]施国良, 陈宇奇. 文本增强与预训练语言模型在网络问政留言分类中的集成对比研究[J]. 图书情报工作. 2021,65(13): 96-107.[43]Kim, S., Park, H.,Lee, J. Word2vec-based latent semantic analysis (W2V-LSA) for topic modeling: A study on blockchain technology trend analysis[J]. Expert Systems with Applications, 2020, 152: 113401. DOI10.1016/j.eswa.2020.113401.[44]北大法宝网. [J/OL]https://www.pkulaw.com/. 2020-11-9.(PKULAW [J/OL] https://www.pkulaw.com/. 2020-11-9.)[45] Devlin J., Chang MW., Lee K., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [J/OL]. https://arxiv.org/pdf/1810.04805.pdf, 2019, 05. |