新兴技术创新网络“液态化”机理及实证分析

曹兴 朱晶莹 杨春白雪

科研管理 ›› 2022, Vol. 43 ›› Issue (2) : 55-64.

PDF(1692 KB)
PDF(1692 KB)
科研管理 ›› 2022, Vol. 43 ›› Issue (2) : 55-64.
论文

新兴技术创新网络“液态化”机理及实证分析

  • 曹兴1,2,朱晶莹1,杨春白雪3
作者信息 +

The mechanism of "liquification" of emerging technology innovative network and its empirical analysis

  • Cao Xing1,2, Zhu Jingying1, Yang Chunbaixue3
Author information +
文章历史 +

摘要

    创新系统“混沌”边缘具有较强的创新潜力,易于新兴技术创新网络的形成与发展。结合生命周期理论,分析了新兴技术形成过程及其与原有技术发展轨迹的关系,深入研究了“液态化”创新网络的形成机理。通过搜集自动驾驶汽车领域专利数据开展了实证分析,运用专利引用分析与社会网络分析相结合的方法,绘制IPC共现网络和专利权人引文网络,通过计算网络各项指标,验证了新兴技术创新网络“液态化”网络的技术特征与知识流动特征。实证结果表明:自动驾驶汽车领域的技术构成具有高异质性、技术领域间存在广泛融合性;知识流动网络存在小世界效应,呈现易流动、流向广、效率高,网络边界模糊,核心创新主体众多且多样化的特点。

Abstract

    With the explosive growth of emerging technologies, the emerging industries have proliferated, which in turn accelerate technology iterations. An important characteristic of innovation in emerging technological fields is that it does not occur in isolation, innovations are generated and implemented by networks of interacting organizations and individuals. Thus, understanding what is the most efficient kind of innovative network becomes crucial for pursuing innovation performance and economic growth. 
    Within the innovative network, knowledge spillovers across technologies, frequent technology diffusion and convergence across different sectors occur. Thus, the innovative network gradually presents the characteristics of fuzzy network boundaries, flexible network connection, heterogeneity of innovators and easy flow of knowledge. Meanwhile, the network structure evolves to be between the ruled and the irregular status, showing a trend of de-core. The extant literature has not mentioned this kind of network structure. To address this gap, this paper proposes a "Liquification" innovative network, whose structure is between multi-core network and complete graphs. There is a high-density connection inside the "Liquification" network, making it easier to develop adjacent possibilities and spread new ideas or innovations. At the same time, it saves the newly generated useful linkages for a long time. Once the "Liquification" network is formed, innovation and invention will continue to emerge. This paper aims to study the formation mechanism of "Liquification" network,and use empirical test to further examine its characteristics.
    In mechanism analysis of "Liquification" network, we found that the technology diffusion and absorption can speed up technological development and improve its limit, delaying the coming of technology recession, thus extending the life cycle of the original technology. The frequent knowledge diffusion and integration among various innovative subjects shortens the distance between different technology networks. Boundaries between technological networks become blurred, and the diffusion of technology no longer depends on specific paths. The orderly diffusion process tends to be disorderly. The collision of information between different innovators changes the way of linking. Therefore, the innovative network presents feature such as knowledge heterogeneity, flexible links, strong network connectivity, strong knowledge mobility, widespread technology integration, and fuzzy network boundaries. The emerging technology innovative network present to be "liquified".
    In order to further verify the characteristics of the "Liquification" network in the mechanism analysis, this paper collects the patent data of the autonomous vehicle field in the Derwent Innovation Index and conducts an empirical analysis. Autonomous vehicle is a smart car that is driven by computer system, considered to be a disruptive innovation according to the emerging technology maturity curve released by Gartner. Observing networks in different time slices, we found that the technical domain increased sharply, providing potential opportunities for technological convergence. And the whole network connectivity was enhanced with a decreasing betweenness centrality and an increasing closeness centrality, indicating that integration between different technical fields is becoming more and more common and is no longer limited to some certain specific key technologies. 
   The results show that the formation of "Liquification" network can improve technology limits, accelerate technology development and extend the technology life cycle. The characteristics of "Liquification" network include knowledge heterogeneity, flexible links, strong network connectivity, strong knowledge mobility, widespread technology integration, and blurred network boundaries. It is also found that the network shows a de-core trend as the "Liquification" network formed. 

关键词

新兴技术 / 创新网络 / 社会网络分析 / 专利分析 / 液态化

Key words

 emerging technology / innovative network / social network analysis / patent analysis / liquification

引用本文

导出引用
曹兴 朱晶莹 杨春白雪. 新兴技术创新网络“液态化”机理及实证分析[J]. 科研管理. 2022, 43(2): 55-64
Cao Xing, Zhu Jingying, Yang Chunbaixue. The mechanism of "liquification" of emerging technology innovative network and its empirical analysis[J]. Science Research Management. 2022, 43(2): 55-64

参考文献

[1]Small H, Boyack K W, Klavans R.Identifying emerging topics in science and technology ☆[J].Research Policy, 2014, 43(8):1450-1467
[2]Boon W, Moors E.Exploring emerging technologies using metaphors – A study of orphan drugs and pharmacogenomics[J].Social Science & Medicine, 2008, 66(9):1915-1927
[3]Rotolo D, Hicks D, Martin B R.What is an emerging technology?[J].Research Policy, 2015, 44(10):1827-1843
[4] 克劳斯?施瓦布, et al.第四次工业革命转型的力量[M].中信出版社, 2016.
[5] 黄鲁成, 杨学君.新兴技术与新兴产业协同演化规律探析[J].科技进步与对策, 2014, 4(3):72-78
[6] 史蒂文·约翰逊.伟大创意的诞生[M]. 浙江人民出版社, 2014.
[7]石乘齐, 党兴华.技术创新网络中组织间依赖的影响因素及形成研究[J].管理工程学报, 2017, 31(1):1-9
[8]曹兴, 杨春白雪, 高远.核心企业主导下创新网络合作行为实验研究[J].科研管理, 2018, 39(02):10-18
[9]张宝建.网络能力、网络结构与创业绩效——基于中国孵化产业的实证研究[J].南开管理评论, 2015, 18(2):39-50
[10]Phelps, C.Longitudinal Study of the Influence of Alliance Network Structure and Composition on Firm Exploratory Innovation[J].Academy of Management Journal, 2010, 53(4):890-913
[11] Alberti, FG, Pizzurno, E. .Oops I did it again! Knowledge leaks with start-ups in open innovation networks[J][J]. European Journal of Innovation Management, 2017, 20(1):50-79
[12] Jessica D,Giusti, Fernando G. Alberti, Federica Belfanti, .Makers and clusters. Knowledge leaks in open innovation networks[J].Journal of Innovation & Knowledge, 2018, :-
[13]JingJing Zhang, Yan Yan, JianCheng Guan.Recombinant distance, network governance and recombinant innovation[J].Technological Forecasting and Social Change, 2019, :-
[14]张红宇, 蒋玉石, 杨力, 刘敦虎.区域创新网络中的交互学习与信任演化研究[J].管理世界, 2016, 270(3):170-171
[15]赵玉林, 李丫丫.技术融合、竞争协同与新兴产业绩效提升——基于全球生物芯片产业的实证研究[J].科研管理, 2017, 38(08):11-18
[16]Dosi G, Nelson R.Technological Paradigms and Technological Trajectories[J].Research Policy, 1982, 11(3):147-162
[17] 宋艳.新兴技术的形成路径及其影响因素研究——基于中国企业实际运作调查[D].电子科技大学, 2011.
[18]王琳, 魏江.知识密集服务嵌入、跨界搜索与制造企业服务创新关系研究[J].科技进步与对策, 2017, 34(16):48-55
[19]Foster, Richard N.Working The S-Curve: Assessing Technological Threats[J].Research Management, 1986, 29(4):17-20
[20]于旭, 郑子龙.组织关系视角下新创高技术企业间知识流动机理研究[J].工业技术经济, 2018, 37(11):93-98
[21]Sammarra A, Biggiero L.Heterogeneity and Specificity of Inter‐Firm Knowledge Flows in Innovation Networks[J].Journal of Management Studies, 2008, 45(4):30-60
[22]林少疆, 徐彬, 陈佳莹.企业创新网络结构嵌入性对协同创新能力影响的实证研究——共生行为的中介作用[J].软科学, 2016, 30(6):16-19
[23] 符正平, 曾素英.集群产业转移中的转移模式与行动特征——基于企业社会网络视角的分析[J].管理世界, 2008, (12):83-92
[24]Karvonen M, K?ssi T.Patent citations as a tool for analysing the early stages of convergence[J].Technological Forecasting & Social Change, 2013, 80(6):1094-1107
[25] Lee W S, Han E J, Sohn S Y.Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents[J].Technological Forecasting & Social Change, 2015, 100(1):317-329
[26]Schoenmakers W, Duysters G.The technological origins of radical inventions[J].Research Policy, 2010, 39(8):1051-1059
[27] 马天旗.专利分析:方法、图表解读与情报挖掘[M].知识产权出版社, 2015.
[28]曹兴, 马慧.新兴技术“多核心”创新网络形成及仿真研究[J].科学学研究, 2019, 37(01):165-174
[29]Stolpe M.Determinants of knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology ☆[J].Research Policy, 2002, 31(7):1181-1198
[30]Albert R, Barabási A.Statistical mechanics of complex networks[J].Review of Modern Physics, 2002, 74(1):x-i
[31]Freeman L C.Centrality in social networks conceptual clarification[J].Social Networks, 1978, 1(3):215-239
[32] 翟东升, 李倩, 张杰, et al.德温特专利信息清洗与标注模型研究[J]., 2013(8):150-154.[J].情报杂志, 2013, (8):150-154
[33] Choe H, Lee D H, Kim H D, et al.Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells[J].Renewable & Sustainable Energy Reviews, 2016, 55:361-370

基金

国家自然科学基金项目:“新兴技术创新网络‘液态化’及其跨界创新研究”(71771083,2018.01—2021.12);湖南省哲学社会科学基金项目:“加快技术深度融合推动我省新兴产业跨界创新的发展思路和对策研究”(19WTA14,2019.01—2020.12)。

PDF(1692 KB)

Accesses

Citation

Detail

段落导航
相关文章

/