科研管理 ›› 2007, Vol. 28 ›› Issue (6): 138-142.

• 论文 • 上一篇    下一篇

基于粗糙集—神经网络的财务危机预警模型实证研究

刘彦文1, 戴红军2   

  1. 1. 大连理工大学,管理学院,辽宁,大连,116024;
    2. 淮南师范学院,经济管理系,安徽,淮南,232001
  • 收稿日期:2006-12-25 出版日期:2007-11-24 发布日期:2011-05-16
  • 作者简介:刘彦文(1965-),男,黑龙江鹤岗人,大连理工大学管理学院副教授,主要研究方向:财务管理。
    戴红军(1970-),男,山东枣庄人,硕士研究生,淮南师范学院经济管理系教师。

Empirical study of the financial risk prediction based on the rough set and ANN mode

Liu Yanwen1, Dai Hongjun2   

  1. 1. School of Management, Dalian University of Technology, Dalian 116024, China;
    2. School of Economics & Management, Huainan Normal University, Huainan 232001, China
  • Received:2006-12-25 Online:2007-11-24 Published:2011-05-16

摘要: 本文提出了以粗糙集与神经网络相结合的技术方法,应用于我国上市公司财务危机预警研究中。在通过以中国上市公司财务数据为基础进行实证分析之后,结果表明粗糙集的引入减少了神经网络的输入维数,采用动量添加法和参数自适应算法修正的神经网络算法,在网络训练的准确性和精度上都优于传统的BP神经网络。

关键词: 粗糙集, 神经网络, 财务危机预警, 算法改进

Abstract: A method which combines the rough set and ANN is proposed, and it is applied to the financial risk research of Chinese listed companies. By empiric analyzing on the financial date of Chinese listed companies, the results show that the introduction of the rough set cuts down the input dimension of ANN, and the ANN algorithm is improved by the momentum accession and the parameter self-adaptation. The modified algorithm has advantages over the traditional BP ANN in the veracity and precision of network training.

Key words: rough set, ANN, financial risk prediction, improved algorithm

中图分类号: