科研管理 ›› 2024, Vol. 45 ›› Issue (12): 122-132.DOI: 10.19571/j.cnki.1000-2995.2024.12.013

• 论文 • 上一篇    下一篇

跨界研发合作网络特征对其颠覆性创新绩效的影响研究

朱晓艳1,林春培2,3,余传鹏4,廖杨月4,李海林1,5   

  1. 1.华侨大学工商管理学院,福建 泉州362021;
    2.华侨大学商务管理研究中心,福建 泉州362021;
    3.福建省习近平新时代中国特色社会主义思想研究中心华侨大学研究基地,福建 泉州362021;
    4.华南理工大学旅游管理系,广东 广州510006;
    5.华侨大学现代应用统计与大数据研究中心,福建 厦门361021

  • 收稿日期:2023-11-03 修回日期:2024-11-20 出版日期:2024-12-20 发布日期:2024-12-06
  • 通讯作者: 李海林
  • 基金资助:
    国家自然科学基金面上项目:“外部变革情境下企业家矛盾性认知框架对破坏性创新的影响机制研究”(71974059,2020—2023);福建省社会科学基金重点项目:“技术扩散视角下福建省制造企业数字化转型的驱动因素与过程机理研究”(FJ2024A023,2024—2026);教育部人文社会科学研究一般项目:“制造企业数字化转型的过程机理研究”(23YJA630124,2023—2026);福建省社会科学基金项目:“外部环境挑战下福建省‘专精特新’中小企业矛盾性认知对企业数字化韧性的影响机制研究”(FJ2023BF029,2023—2026)。

Research on the influence of the characteristics of cross-border R&D cooperation network on its disruptive innovation performance

Zhu Xiaoyan1, Lin Chunpei2,3, Yu Chuanpeng4, Liao Yangyue4, Li Hailin1,5   

  1. 1. School of Business Administration, Huaqiao University, Quanzhou 362021, Fujian, China; 
    2. Business Management Research Center, Huaqiao University, Quanzhou 362021, Fujian, China; 
    3. Fujian Province Xi Jinping Research Center for Socialism with Chinese Characteristics 
    in a New Era, Huaqiao University, Quanzhou 362021, Fujian, China;
    4. Department of Tourist Management, South China University of Technology, Guangzhou 510006, Guangdong, China; 5. Research Center of Applied Statistics and Big Data, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2023-11-03 Revised:2024-11-20 Online:2024-12-20 Published:2024-12-06

摘要: 跨界研发合作是实现核心技术突破的新型合作模式,对提升颠覆性创新绩效,保障经济高质量发展具有重要作用。基于社会网络理论,本文以无人机领域联合专利申请信息识别出的290个跨界研发合作网络为研究对象,采用K-Means聚类算法和决策树CART算法,分析这些网络的基本特征、区分网络类型并挖掘出不同类型网络的特征变量组合对其颠覆性创新绩效的影响。研究表明:(1)跨界研发合作网络共有三种类型:二元型研发合作网络、网状型研发合作网络和复杂型研发合作网络,并呈现出不同的网络特征;而且,跨界研发合作网络类型主要以“二元型研发合作网络”为主。(2)三种不同类型的跨界研发合作网络的颠覆性创新绩效存在差异;从高颠覆性创新绩效占比来看,网状型研发合作网络占比最高,复杂型研发合作网络占比次之,二元型研发合作网络占比最低。(3)合作强度是影响颠覆性创新绩效的核心因素;在二元型研发合作网络中,合作强度会积极影响其颠覆性创新绩效;对于合作强度较高的网状型研发合作网络而言,保持较低的平均路径长度有助于其颠覆性创新绩效的提升;复杂型研发合作网络的颠覆创新绩效受合作强度、聚集系数与网络中心性的共同影响。本文丰富并拓展了基于社会网络理论视角的颠覆性创新绩效研究,并为各类创新主体通过跨界研发合作方式提高颠覆性创新绩效的实践行动提供了有益指导。

关键词: 颠覆性创新绩效, 跨界研发合作, 网络特征, 决策规则, 聚类分析

Abstract:   Cross-border R&D cooperation is a new type of cooperation model that achieves breakthroughs in core technologies, and plays an important role in improving disruptive innovation performance and ensuring high-quality economic development. Based on social network theory, this article takes 290 cross-border R&D cooperation networks identified from joint patent application information in the field of drones as the research object. K-Means clustering algorithm and decision tree CART algorithm are used to analyze the basic characteristics of these networks, distinguish network types, and explore the impact of feature variable combinations of different types of networks on their disruptive innovation performance. Research has shown that there are three types of crossborder R&D cooperation networks: binary R&D cooperation networks, mesh R&D cooperation networks, and complex R&D cooperation networks, which exhibit different network characteristics; Moreover, the main types of crossborder R&D cooperation networks are binary R&D cooperation networks. (2) There are differences in the disruptive innovation performance of three different types of crossborder R&D cooperation networks; In terms of the proportion of highly disruptive innovation performance, the network type R&D cooperation network has the highest proportion, followed by the complex type R&D cooperation network, and the binary type R&D cooperation network has the lowest proportion. (3) The intensity of cooperation is the core factor that affects the performance of disruptive innovation; In a binary R&D cooperation network, the intensity of cooperation will positively affect its disruptive innovation performance; For mesh R&D cooperation networks with high cooperation intensity, maintaining a lower average path length helps to improve their disruptive innovation performance; The disruptive innovation performance of complex R&D cooperation networks is jointly influenced by cooperation intensity, clustering coefficient, and network centrality. This article enriches and expands the research on disruptive innovation performance from the perspective of social network theory, and provides useful guidance for various innovative entities to improve disruptive innovation performance through cross-border research and development cooperation.

Key words: disruptive innovation performance, crossborder R&D cooperation, network characteristics, decision rule, cluster analysis