[] 侯海燕, 刘则渊, 栾春娟. 基于知识图谱的国际科学计量学研究前沿计量分析[J]. 科研管理, 2009, 30(1): 164-170.
Hou Haiyan, Liu Zeyuan, Luan Chunjuan. Quantitative analysis on the research front of international scientometrics based on mapping of knowledge[J]. Science Research Management, 2009, 30(1): 164-170.
[] 李丹, 杨建君. 国内绿色技术创新文献特色及前沿探究[J]. 科研管理, 2015, 36(6): 109-118.
Li Dan, Yang Jianjun. A literature research on characteristics and trend for domestic green technology innovation[J]. Science Research Management, 2015, 36(6): 109-118.
[] 罗瑞, 许海云, 董坤. 领域前沿识别方法综述[J]. 图书情报工作, 2018, 62(23):119-131.
Luo Rui, Xu Haiyun, Dong Kun. A review of the main recognition methods of frontier research[J]. Library and Information Service, 2018, 62(23):119-131.
[] Boyack K W, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? [J]. Journal of the American Society for Information Science and Technology, 2010, 61(12):2389-2404.
[] Shibata N, Kajikawa Y, Takeda Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science & Technology, 2010, 60(3):571-580.
[] Huang M H, Chang C P. A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation[J]. Scientometrics, 2015, 102(3):2041-2057.
[] Kessler M. Bibliographic coupling between scientific papers[J]. American Documentation, 1996, 14:10-25.
[] Huang M H, Chang C P. Detecting research fronts in OLED field using bibliographic coupling with sliding window[J]. Scientometrics, 2014, 98(3):1721-1744.
[] Inchae P, Keeeun L, Byungun Y. Exploring promising research frontiers based on knowledge maps in the solar cell technology field[J]. Sustainability, 2015, 7(10):13660.
[] 黄福, 侯海燕, 任佩丽等. 基于共被引与文献耦合的研究前沿探测方法鄰选[J]. 情报杂志, 2018, 37(12):13-19+35.
Huang Fu, Hou Haiyan, Ren Peili, et al. Selection of research front detection methods based on bibliographic coupling and co-citation[J]. Journal of Intelligence, 2018, 37(12):13-19+35.
[] 高楠, 赵蕴华, 彭鼎原. 基于引用关系与词汇分析法的研究前沿识别研究——以人工智能领域为例[J]. 情报杂志, 2020, 039(004):44-50,13.
Gao Nan, Zhao Yunhua, Peng Dingyuan. Research on frontier prediction based on citation relation and lexical analysis——Taking the field of artificial intelligence as an example[J]. Journal of Intelligence, 2020, 039(004):44-50,13.
[] 韩毅, 金碧辉. 引文网络主路径分析方法的形成与演化[C]. 第六届中国科技政策与管理学术年会, 2010.
Han Yi, Jin Bihui. The origin and evolution of main path analysis in citation network[C]. The 6th China Science and Technology Policy and Management Academic Annual Conference, 2010.
[] Levitt J M, Thelwall M. The most highly cited Library and Information Science articles: Interdisciplinarity, first authors and citation patterns[J]. Scientometrics, 2009, 78(1):45-67.
[] Ho, Yuh-Shan. Classic articles on social work field in Social Science Citation Index: A bibliometric analysis[J]. Scientometrics, 2014, 98(1):137-155.
[] Price D J. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[] Yan R, Tang J, Liu X B, et al. Citation count prediction: Learning to estimate future citations for literature[C]. Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011, 2011:1247-1252.
[] Chakraborty T, Kumar S, Goyal P, et al. Towards a stratified learning approach to predict future citation counts [C]. 2014 IEEE/ACM Joint Conference on Digital Libraries (JCDL), 2014:351-360.
[] Dong Y, Johnson R A, Chawla N V. Will this paper increase your h-index? Scientific impact prediction[C]. International Conference on Web Search and Data Mining (WSDM). 2014.
[] 耿骞, 景然, 靳健等. 学术论文引用预测及影响因素分析[J]. 图书情报工作, 2018, 62(14):29-40.
Geng Qian, Jing Ran, Jin Jian, et al. Citation prediction and influencing factors analysis on academic papers[J]. Library and Information Service, 2018, 62(14):29-40.
[] 钟镇. 从高被引与零被引论文的引文结构差异看Research Front与Research Frontier的区别[J]. 图书情报工作, 2015, 59(08):87-96.
Zhong Zhen. The difference between research front and research frontier based on the reference structure difference between highly cited papers and un-cited papers[J]. Library and Information Service, 2015, 59(08):87-96.
[] Upham S P, Small H. Emerging research fronts in science and technology: patterns of new knowledge development[J]. Scientometrics, 2010, 83(1):15-38.
[] 卢超, 侯海燕, Ying D, et al. 国外新兴研究话题发现研究综述[J]. 情报学报, 2019, 38(01):97-110.
Lu Chao, Hou Haiyan, Ying D, et al. Review of international studies on discovering emerging topics[J]. Journal of The China Society for Scientific and Technical Information, 2019, 38(01):97-110.
[] Pobiedina N, Ichise R. Predicting citation counts for academic literature using graph pattern mining[J]. European Respiratory Journal, 2014, 45(4):1027-36.
[] Harish S. Bhat, Li-Hsuan Huang, Sebastian Rodriguez, et al. Citation prediction using diverse features[C]. IEEE International Conference on Data Mining Workshop. IEEE, 2015.
[] 肖学斌, 柴艳菊. 论文的相关参数与被引频次的关系研究[J]. 现代图书情报技术, 2016(06):46-53.
Xiao Xuebin, Chai Yanju. Properties of scholarly papers and number of citations[J]. New Technology of Library and Information Service, 2016(06):46-53.
[] Chakraborty T, Kumar S, Reddy M D, et al. Automatic classification and analysis of interdisciplinary fields in computer sciences[C]. International Conference on Social Computing. IEEE, 2013.
[] 吕晓赞, 王晖, 周萍. 中美大数据论文的跨学科性比较研究[J]. 科研管理, 2019, 40(04):1-13.
Lv Xiaozan, Wang Hui, Zhouping. A comparative study of the interdisciplinarity of big data research in China and the USA[J]. Science Research Management, 2019, 40(04):1-13.
[] 朱鑫萍. 论文影响力的预测方法研究[D]. 内蒙古大学, 2018.
Zhu Xinping. Research on the prediction method of paper influence[D]. Inner Mongolia University, 2018.
[] Yan R, Huang C, Tang J, et al. To better stand on the shoulder of giants[C]. Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. Washington, DC, USA: Association for Computing Machinery, 2012, 51-60.
[] Singh M, Patidar V, Kumar S, et al. The role of citation context in predicting long-term citation profiles: An experimental study based on a massive bibliographic text dataset[C]. ACM International on Conference on Information & Knowledge Management. ACM, 2015.
[] Yu T, Yu G, Li P Y, et al. Citation impact prediction for scientific papers using stepwise regression analysis[J]. Scientometrics, 2014, 101:1233-1252.
[] Didegah F, Thelwall M. Determinants of research citation impact in nanoscience and nanotechnology[J]. Journal of the American Society for Information Science and Technology, 2013, 64(5):1055-1064.
[] Kostoff R N. The difference between highly and poorly cited medical articles in the journal Lancet[J]. Scientometrics, 2007, 72(3):513-520.
[] Cortes C, Vapnik V N. Support vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[] Weston J, Watkins C. Support vector machines for multi-class pattern recognition[C]. Proc European Symposium on Artificial Neural Networks. 1999.
[] 汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(05):1281-1286.
Wang Haiyan, Li Jianhui, Yang Fenglei. An overview on theory and algorithm of support vector machines[J]. Application Research of Computers, 2014, 31(05):1281-1286.
[] Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1):5-32.
[] 孙菲菲, 曹卓, 肖晓雷. 基于随机森林的分类器在犯罪预测中的应用研究[J]. 情报杂志, 2014, 33(10):148-152.
Sun Feifei, Cao Zhuo, Xiao Xiaolei. Application of an improved random forest based classifier in crime prediction domain[J]. Journal of Intelligence, 2014, 33(10):148-152.
[] Chen T, Guestrin C. XGBoost: A scalable tree boosting system[J]. 2016, 785-794.
[] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.
[] 束学渊, 汪立新. 联合循环平稳特征PCA与XGBoost的频谱感知[J]. 计算机应用与软件, 2020, 37(04):114-118+126.
Shu Xueyuan, Wang Lixin. Spectrum sensing by combining cyclostationary features PCA with XGBoost[J]. Computer Applications and Software, 2020, 37(04):114-118+126.
[] Forman G. An extensive empirical study of feature selection metrics for text classification[J]. Journal of Machine Learning Research, 2003, 3(2):1289-1305.
[] Andrew Ng. Clustering with the k-means algorithm[J]. Machine Learning, 2012.
|