科研管理 ›› 2025, Vol. 46 ›› Issue (8): 165-177.DOI: 10.19571/j.cnki.1000-2995.2025.08.016

• 论文 • 上一篇    下一篇

区域绿色创新发展的空间动态演化研究——基于京津冀及周边地区的测度

谢永乐1,袁磊2,王红梅3   

  1. 1.对外经济贸易大学国际发展合作学院,北京100029;
    2.中国互联网金融协会,北京102412;
    3.中央财经大学政府管理学院,北京100081

  • 收稿日期:2023-12-03 修回日期:2024-11-27 出版日期:2025-08-20 发布日期:2025-08-14
  • 通讯作者: 谢永乐
  • 基金资助:
    国家自然科学基金青年项目:“‘双碳’目标背景下我国地区环境规制的敏感性博弈及其绩效研究”(72204044,2023.01—2025.12);北京市社会科学基金一般项目:“深入推进京津冀绿色创新协同发展的战略要求、逻辑机理和实践路径研究”(23LLYJC107,2024.01—2025.12);中央高校基本科研业务费专项资金资助项目:“跨域性环境协同治理绩效评价研究——基于动态空间网络视角”(21QD35,2022.01—2024.12)。

Research on the spatial dynamic evolution of regional green innovation development: Measurements based on the Beijing-Tianjin-Hebei and surrounding areas

Xie Yongle1, Yuan Lei2, Wang Hongmei3   

  1. 1. School of International Development and Cooperation, University of International Business and Economics, Beijing 100029, China; 
    2. National Internet Finance Association of China, Beijing 102412, China; 
    3. School of Government, Central University of Finance and Economics, Beijing 100081, China
  • Received:2023-12-03 Revised:2024-11-27 Online:2025-08-20 Published:2025-08-14

摘要:    绿色创新发展是中国式现代化建设的核心议题之一,推动局域差异型创新与全域统筹型协同是其重要引擎和关键抉择。本文构建SBM-DEA模型测度京津冀及周边地区2005—2019年绿色创新发展水平,以空间自相关、标准差椭圆、Kernel密度探讨空间分布及演进特征,利用Dagum基尼系数揭示差异及来源,采用变异系数与计量模型检验收敛性。发现:绿色创新发展整体呈强度偏低、不稳定、非均衡的“U”形空间联动趋势,四种集聚模式并存;标准差椭圆按西南—东北方向延展,旋转角波动频率高、重心位于河北,具有集聚-扩张交替分布特征;全域Kernel密度曲线存在不同幅度右移,以单峰为主、峰值逐步下降、带宽逐渐增大、显著右拖尾,局域Kernel密度曲线具有双峰、右拖尾、交替移动等特征,离散程度高;基尼系数先降后升,收敛-分化态势明显,地区间差异及其超变密度是主要根源;不存在σ收敛态势,具有绝对和条件β收敛特征。因此,需落实好平衡目标差异、统筹发展步调、协调专项分工、完善绩效体系等措施。

关键词: 绿色创新发展, 空间分布, 动态演化, 京津冀及周边地区

Abstract:    Green innovative development is one of the core issues of Chinese modernization, and promoting locally-differentiated innovation and regionally-coordinated development is a critical engine and key decision for this process. This paper constructed the SBM-DEA model to measure the green innovation development level of Beijing-Tianjin-Hebei and surrounding areas from 2005 to 2019. It explored the spatial distribution and evolutionary characteristics using the spatial autocorrelation, standard deviation ellipse and Kernel density methods, and revealed differences and their sources with the Dagum Gini coefficient. The paper also tested for convergence using the coefficient of variation and econometric models. The findings are as follows: Overall, the green innovative development in Beijing-Tianjin-Hebei and surrounding areas exhibits a U-shaped spatial linkage trend characterized by low intensity, instability and imbalance, with four types of agglomeration patterns coexisting. The standard deviation ellipse extends along the southwest-northeast direction, with high fluctuation frequency in the rotation angle and the center located in Hebei, reflecting an alternating pattern of agglomeration and expansion. The global Kernel density curve shows rightward shifts of varying degrees, predominantly unimodal, with gradually decreasing peak values, increasing bandwidth, and a pronounced rightward tail. The local Kernel density curves show the diversified and asymmetric features such as twin peak, right-tail, alternating movement, with a high degree of dispersion. The Gini coefficient initially decreases and then increases, indicating an obvious convergence-divergence trend, with regional differences and density of transvariation being the main sources. There is no σ-convergence, but absolute and conditional β-convergence characteristics are present. Therefore, it is necessary to implement such measures as balancing target differentiation, coordinating development pace, aligning specialized divisions of labor, and improving performance systems.

Key words: green innovation development, spatial distribution, dynamic evolution, Beijing-Tianjin-Hebei and surrounding areas